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HERMITIAN TOEPLITZ{LIKE MATRICES
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Abstract. An iterative method based on displacement structure is proposed for computing
eigenvalues and eigenvectors of a class of Hermitian Toeplitz{like matrices which includes matrices
of the form T �T where T is arbitrary Toeplitz matrix, Toeplitz{block matrices and block{Toeplitz
matrices. The method obtains a speci�c individual eigenvalue (i.e., the i-th smallest, where i is a
speci�ed integer in [1; 2; : : : ; n]) of an n�n matrix at a computational cost of O(n2) operations. An
associated eigenvector is obtained as a byproduct. The method is more e�cient than general purpose
methods such as the QR algorithm for obtaining a small number (compared to n) of eigenvalues.
Moreover, since the computation of each eigenvalue is independent of the computation of all other
eigenvalues, the method is highly parallelizable. Numerical results illustrate the e�ectiveness of the
method.
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1. Introduction. In this paper we consider the eigenvalue problem for an n�n
Hermitian matrix An which has displacement structure in the sense that

AnZn � ZnAn = GnH
T
n ;(1)

where Zn is the shift matrix

Zn =

2
666664

0 0 � � � 0 0
1 0 � � � 0 0
0 1 � � � 0 0
...

...
. . .

...
...

0 0 � � � 1 0

3
777775 ;

Gn and Hn are in Cn��, and � is small compared to n. (For discussions of other
types of displacement structure see [8, 10, 11]). The smallest integer � for which (1)
holds with some Gn and Hn in Cn��, is called the fZn; Zng-displacement rank of An;
we will call it simply the displacement rank of An.

Henceforth we will say that a matrix which satis�es (1) with � small compared
to n is a Toeplitz{like matrix. There are many e�cient direct methods that exploit
displacement structure to invert Toeplitz{like matrices, or to solve Toeplitz{like sys-
tems Anx = b [6, 8, 11]. There are also preconditioned conjugate gradient methods
for solving Toeplitz-like systems with O(n logn) operations [2, 4]. However, numer-
ical solution of the Toeplitz eigenvalue problem has only recently received attention
[5, 9, 15, 16]. In particular, Cybenko and Van Loan [5] presented a method for us-
ing Levinson's algorithm [12] to �nd the smallest eigenvalue of an n � n Hermitian
Toeplitz matrix with O(n2) operations. In [15, 16], Trench extended their method and
gave an iterative method for computing arbitrary eigenvalues and associated eigen-
vectors of Hermitian Toeplitz and Toeplitz{plus{Hankel matrices at a cost of O(n2)
per eigenvalue. The purpose of this paper is to use Trench's method to compute the
eigenvalues and eigenvectors of Hermitian Toeplitz{like matrices.

In x2 we propose an algorithm for �nding individual eigenvalues of an n�n matrix
with displacement rank not greater than � at a computation cost of O(�n2) each. In
x3 we give examples of Hermitian matrices with displacement structure (1), along
with speci�c formulas for the associated matrices Gn and Hn. In x4 we discuss an
application to signal processing. In x5 we describe the results of numerical experiments
with the algorithm.

2. The algorithm. The following theorem from [16] provides the motivation
and the theoretical basis for the method. Part of this theorem goes back at least
to Wilkinson [17]. (For the statement concerning the inertia of An � �In, see also
Browne [1]).

Theorem 2.1. Let An = [aij ]
n
i;j=1 be a Hermitian matrix, and de�ne

Am = [aij ]
m
i;j=1; 1 � m � n:

Let p0(�) = 1,

pm(�) = det (Am � �Im); 1 � m � n;

and

qm(�) =
pm(�)

pm�1(�)
; 1 � m � n:
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De�ne

vm =

2
6664

a1;m+1

a2;m+1

...

am;m+1

3
7775 ; 1 � m � n� 1:

Let Sm be the spectrum of Am and Sn = [n�1
m=1Sm. If � is real let Negn(�) be the

number (counting multiplicities) of eigenvalues of An less than �. For each � =2 Sn
let w0(�) = 0 and

wm(�) =

2
6664

w1m(�)
w2m(�)

...

wmm(�)

3
7775 ; 1 � m � n� 1;

be the solutions of the systems

(Am � �Im)wm(�) = vm; 1 � m � n� 1:(2)

De�ne

ym(�) =

�
wm�1(�)

�1
�
; 2 � m � n:(3)

Then

(Am � �Im)ym(�) = �qm(�)em; 2 � m � n;(4)

where em = [0 0 � � � 1]T is the last column of Im. Moreover,

qm(�) = amm � �� v�m�1wm�1(�); 1 � m � n;

q0m(�) = �1� kwm�1(�)k22;

and Negn(�) equals the number of negative quantities in fq1(�); q2(�); : : : ; qn(�)g.
Finally, if � is an eigenvalue of An, then yn(�) is an associated eigenvector.

Theorem 2.1 provides a way to compute pn(�)=pn�1(�) and the inertia ofAn��In.
Therefore, in principle it can be used in conjunction with a root{�nding procedure
to determine a given eigenvalue �i of An, provided that �i is not \too close" to an
eigenvalue of one of the principal submatrices A1; A2; : : : ; An�1 of An. This method
is not practical for general Hermitian matrices, because in general O(n3) operations
are required to solve the systems (2) for each value of �. However, Theorem 2.1 can
be useful if An is structured so that this computational cost is O(n2). In [15], Trench
described a computational strategy combining Theorem 2.1 with bisection and the
Pegasus root{�nding method for computing individual eigenvalues and eigenvectors
of Hermitian Toeplitz matrices with O(n2) operations. In [16] he applied the same
strategy to Hermitian Toeplitz{plus{Hankel matrices. We will now show that a similar
approach can be used to compute individual eigenvalues and eigenvectors of Toeplitz{
like matrices.
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Henceforth Gm andHm (1 � m � n) are them��matrices obtained by dropping
rows m+ 1; : : : ; n from Gn and Hn; thus

Gm = UmnGn and Hm = UmnHn;(5)

where Umn is the m � n matrix obtained by dropping the same rows from Im. We
denote the jth column of Gm by

g
(m)
j =

2
64

g1j
...

gmj

3
75 ;

thus,

Gm = [g
(m)
1 g

(m)
2 � � � g(m)

� ]:

The following result of Heinig and Rost [8, p.161] is crucial to our approach.
Lemma 2.2. If An satis�es (1) then

AmZm � ZmAm = GmH
T
m � vme

T
m; 1 � m � n� 1:(6)

Proof. It is easily veri�ed that

UmnAnZnU
T
mn = AmZm + vme

T
m and UmnZnAnU

T
mn = ZmAm:

Therefore we can obtain (6) by multiplying (1) on the left by Umn and on the right
by UT

mn, and invoking (5).
The following algorithm provides an O(�n2) method for solving the linear systems

(2) if An satis�es (1) with Gn; Hn 2 Cn��. The algorithm is an adaptation of a
recursion formula given in [8, p.161] for solving systems with Toeplitz{like matrices.

Algorithm 2.3. If � =2 Sn then q1(�); : : : ; qn(�) can be computed as follows:

q1(�) = a11 � �; w1(�) =
a12
q1(�)

;

f
(1)
j (�) =

g1j
q1(�)

; 1 � j � �;

and for 2 � m � n,

qm(�) = amm � �� v�m�1wm�1(�);(7)

ym(�) =

�
wm�1(�)

�1
�
;

f
(m)
j (�) =

�
f
(m�1)
j�1 (�)

0

�
� (gmj � v�m�1f

(m�1)
j�1 (�))

qm(�)
ym(�); 1 � j � �;(8)

and

wm(�) =

�
0

wm�1(�)

�
�
h
f
(m)
1 (�) f

(m)
2 (�) � � � f (m)

� (�)
i
HT

mym(�):(9)
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Proof. Adding and subtracting �Zm on the left side of (6) yields

(Am � �Im)Zm � Zm(Am � �Im) = GmH
T
m � vme

T
m; 1 � m � n� 1:(10)

From (3) and (4), for 2 � m � n,

eTmym(�) = �1; Zm(Am � �Im)ym(�) = 0; and Zm(�)ym(�) =

�
0

wm�1(�)

�
:

Therefore, multiplying (10) on the right by ym(�) yields

(Am � �Im)

�
0

wm�1(�)

�
= GmH

T
mym(�) + vm; 2 � m � n:

Multiplying by (Am � �Im)
�1 and recalling (2) shows that this is equivalent to

wm(�) =

�
0

wm�1(�)

�
� Fm(�)H

T
mym(�);

where

Fm(�) = (Am � �Im)
�1Gm;

which we write in terms of its columns as

Fm(�) = [f
(m)
1 (�) f

(m)
2 (�) � � � f (m)

� (�)]:

These columns are the solutions of

(Am � �Im)f
(m)
j (�) = g

(m)
j =

�
g
(m�1)
j

gmj

�
; 1 � j � �:(11)

Since

(Am�1 � �Im�1)f
(m�1)
j (�) = g

(m�1)
j and (Am � �Im)ym(�) = �qm(�)em;

it follows that the solutions of (11) are given by (8).

3. Examples. The following are examples of Hermitian matrices with the kind
of displacement structure indicated in (1).

(i) A Hermitian Toeplitz matrix Tn = [ti�j ]
n
i;j=1 (where t�r = tr) has displace-

ment rank at most 2, since

TnZn � ZnTn =

2
6664

1 0
0 tn�1
...

...
0 t1

3
7775
�
t1 � � � tn�1 0
0 � � � 0 �1

�
:

(ii) If Tn = [ti�j ]
n
i;j=1 is an arbitrary (not necessarily Hermitian) n� n Toeplitz

matrix, then An = T �nTn has displacement rank at most 4 (see [8, p.146] and [10]). It
can be shown that An satis�es (1) with

Gn =

2
6664

0 0 1 0
t�1 tn�1 0 b1
...

...
...

...
t�n+1 t1 0 bn�1

3
7775 and Hn =

2
6664

t�1 �tn�1 c1 0
...

...
...

...
t�n+1 �t1 cn�1 0
0 0 0 �1

3
7775 ;
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where

bi =

nX
k=1

tk�i+1tk�n and cj =

n�1X
k=1

tk�1tk�j�1:

(iii) A matrix of the form
Pk

i=1 T
(i)�
n T

(i)
n , where T

(1)
n ; : : : ; T

(k)
n are arbitrary Toeplitz

matrices, has displacement rank at most 4k [3]. Matrices like this arise in solving the
normal equations of Toeplitz least squares problems in signal and image processing [2].

(iv) A Hermitian Toeplitz{block matrix of the form

An =

2
6666664

T
(1;1)
m T

(1;2)
m � � � T

(1;s)
m

T
(1;2)�
m T

(2;2)
m � � � T

(2;s)
m

...
...

. . .
...

T
(1;s�1)�
m T

(2;s�1)�
m � � � T

(s�1;s)
m

T
(1;s)�
m T

(2;s)�
m � � � T

(s;s)
m

3
7777775
;(12)

where n = sm and fT (i;j)
m gsi;j=1 are Toeplitz matrices given by [T

(i;j)
m ]mk;l=1 = t

(i;j)
k�l ,

has displacement rank at most 2s [8, p.147]. For example, if s = 2 it can be shown
that (1) holds with n = 2m,

Gn =

2
666666666666664

1 0 t
(1;2)
0 0

0 0 t
(1;2)
1 � t

(1;1)
�m+1 �t(1;2)

�m+1
...

...
...

...

0 0 t
(1;2)
m�1 � t

(1;1)
�1 �t(1;2)

�1

0 1 t
(2;2)
0 0

0 0 t
(2;2)
1 � t

(1;2)
�m+1 �t(2;2)

�m+1
...

...
...

...

0 0 t
(2;2)
m�1 � t

(1;2)
�1 �t(2;2)

�1

3
777777777777775

and Hn =

2
666666666666664

t
(1;1)
�1 t

(1;2)
�1 � t

(1;1)
m�1 0 0

...
...

...
...

t
(1;1)
�m+1 t

(1;2)
�m+1 � t

(1;1)
1 0 0

0 �t(1;1)0 1 0

t
(1;2)
�1 t

(2;2)
�1 � t

(1;2)
m�1 0 0

...
...

...
...

t
(1;2)
�m+1 t

(2;2)
�m+1 � t

(1;2)
1 0 0

0 �t(1;2)0 0 1

3
777777777777775

:

(v) For an example closely related to (iv) let Bn be the block{Toeplitz matrix

Bn =
h
C(p�q)
s

im
p;q=1

;

where each block is an s� s matrix; thus,

C(r)
s =

h
c
(r)
ij

is
i;j=1

:

Now let Pn be the n � n permutation matrix de�ned as follows: for k = 1; 2; : : : ;m,
rows (k � 1)s+ 1 through ks of Pn are rows k; k +m; : : : ; k + (s � 1)m of In. Then
An = PnBnP

T
n is the Toeplitz{block matrix

An =
h
T (i;j)
m

is
i;j=1

;

where

T i;j
m =

h
c
(p�q)
ij

im
p;q=1

:

Moreover, if Bn is Hermitian then so is An; that is, An is of the form (12). Finally,
if � is an eigenvalue and x is an associated eigenvector of An, then � is an eigenvalue
and P T

n x is an associated eigenvector of Bn.
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4. An application to signal processing. The input fxkg and the output fykg
of a transversal �lter of order n are related by

yr =

n�1X
k=0

wkxr�k:

In signal processing problems it is often necessary to estimate the �lter coe�cients
fw0; w1; : : : ; wn�1g given observed values fx1; x2; : : : ; xmg and fy1; y2; : : : ; ymg of the
input and output, where m > n. One way to do this is to choose fw0; w1; : : : ; wn�1g
so as to minimize

�(w0; w1; : : : ; wn�1) =

mX
r=1

 
yr �

n�1X
k=0

wkxr�k

!2

;

where it is assumed that xj = 0 if j � 0. An elementary argument shows that
fw0; w1; : : : ; wn�1g should be chosen so that

nX
j=1

aijwj�1 =

mX
r=1

yrxr�i+1; 1 � i � n;

where

aij =

mX
r=1

xr�i+1xr�j+1:

The matrix An = [aij ]
n
i;j=1 is given by An = XTX , where X is the m � n Toeplitz

matrix

X =

2
66666666666666664

x1 0 � � � 0 0

x2 x1
. . . 0

... x2 x1
. . .

...
...

. . .
. . .

. . . 0

xn
. . .

. . .
. . . x1

...
. . .

. . .
. . .

...

xm�1
. . .

. . .
. . . xm�n

xm xm�1 � � � xm�n+2 xm�n+1

3
77777777777777775

:(13)

The matrix XTX is called the normal equations matrix or the information matrix

of the corresponding least squares problem [13, 14]. It is an approximation to the
the correlation matrix of the input signal data. We are interesting in computing the
eigenvalues of XTX because, for example, the smallest and the largest eigenvalues of
XTX are related to the accuracy of the least squares computations and the stability
of least squares algorithms [13, 14]. In [7] it was shown that the �lter coe�cients
that maximize the output signal-to-noise ratio can be obtained from the eigenvector
of XTX associated with its largest eigenvalue.
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It can be shown that An = XTX satis�es (1) with

Gn =

2
6664

0 1 0
xm 0 u1
...

...
...

xm�n+2 0 un�1

3
7775 and Hn =

2
6664

�xm v1 0
...

...
...

�xm�n+2 vn�1 0
0 0 �1

3
7775 ;

where

ui =

m�n+1X
l=1

xlxl+n�i and vj =

mX
l=j+1

xlxl�j :

Therefore each iteration of Algorithm 2.3 requires O(3n2) operations.

5. Numerical results. We tried Algorithm 2.3 on Toeplitz{block matrices (with
s = 2) as mentioned in x3 and on matrices of the form T �nTn where Tn is an arbitrary
real Toeplitz matrix. The elements of these matrices are randomly generated with a
uniform distribution in [�10; 10]. All computations were done with Matlab in double
precision.

Let �1 � �2 � � � � � �n be the eigenvalues of a Toeplitz-like matrix An, and
suppose we wish to �nd �i, where i is a speci�ed integer in [1; : : : ; n]. We assume
that �i is not an eigenvalue of any of the principal submatrices A1; : : : ; An�1. We
�rst �nd an interval (�; �) containing �i but not any other eigenvalues of An, or any
eigenvalues of An�1. On such an interval qn is continuous. In [15] it was shown that
� and � satisfy this requirement if and only if

Negn(�) = i� 1; Negn(�) = i;

qn(�) > 0; and qn(�) < 0;

and a strategy was given for obtaining (�; �) by means of bisection. After (�; �) is
determined, we use the Matlab M-�le \fzero" to �nd �i as a root of the function qn(�).
(This root{�nding algorithm was originated by T. Dekker and further improved by
R. Brent; see Matlab on-line documentation.) We stop the iteration for �i when the
di�erence between successive iterates �k�1 and �k obtained by the root �nder satis�es
the inequality

j�k � �k�1j � 4� 10�11 �maxfj�kj; 1g:

To check the accuracy of the individual eigenvalues and associated eigenvectors
of the randomly generated Toeplitz{like matrices, we computed the residual norms

�i =
kAnyn(~�i)� ~�iyn(~�i)k2

kyn(~�i)k2
;

where ~�i is the approximate ith eigenvalue and yn(~�i) (as de�ned in (3) with � = ~�i)
is an approximate �i{eigenvector. Tables 1 and 2 show the distribution of f�ig for
50 randomly generated matrices of order 100, 50 of order 500, and 50 of order 1000,
for two types of Toeplitz{like matrices. Table 3 lists the average number of iterations
per eigenvalue for two types of Toeplitz{like matrices.
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For each randomly generated Toeplitz{like matrix of order n we formed the di-
agonal matrix Dn consisting of the computed eigenvalues and the matrix 
n whose
columns are the corresponding computed eigenvectors. For each matrix we computed
the reconstruction and orthogonality errors

� =
kAn �
nDn


T
nkF

kAnkF and � =
kIn �
n


T
nkFp

n
;

where k � kF is the Frobenius norm. The results are shown in Tables 4 and 5.
We also tried Algorithm 2.3 on matrices of the form XTX where X is as in (13),

with m = 1024 and n = 128. We considered 50 cases with fx1; : : : ; x1024g generated
by the second-order autoregressive (AR) process

xk � 1:4xk�1 + 0:5xk�2 = �k;

and 50 cases with fx1; : : : ; x1024g generated by the second-order moving-average (MA)
process

xk = �k + 0:75�k�1 + 0:25�k�2:

In all instances f�kg is a Gaussian process with mean zero and variance one, and
E(�j�k) = �jk . Tables 6 and 7 show the distribution of the residual norm �i and the
relative error between the eigenvalues computed by Algorithm 2.3 and those computed
by the QR method, respectively. Table 8 shows the values of � and � for these two
input processes. The average numbers of iterations per eigenvalue for the AR and
MA processes were 10.23 and 10.54 respectively.

Table 1

Distribution of errors f�ig for 50 matrices An = T �
nTn, where Tn are randomly generated

nonsymmetric n� n Toeplitz matrices.

Number of errors
Interval n = 100 n = 500 n = 1000

[10�2; 10�1) 0 0 0
[10�3; 10�2) 0 0 1
[10�4; 10�3) 0 1 2
[10�5; 10�4) 1 10 33
[10�6; 10�5) 5 177 306
[10�7; 10�6) 20 259 1848
[10�8; 10�7) 945 8591 21646
[10�9; 10�8) 2951 14467 24742
[10�10; 10�9) 923 1345 1343
[10�11; 10�10) 113 94 56
[10�12; 10�11) 42 56 23
[10�13; 10�12) 0 0 0



10 Michael K. Ng and William F. Trench

Table 2

Distribution of errors f�ig for 50 randomly generated Toeplitz-block matrices with s = 2 and
n = 2m.

Number of errors
Interval n = 100 n = 500 n = 1000

[10�2; 10�1) 0 0 0
[10�3; 10�2) 0 0 0
[10�4; 10�3) 0 0 1
[10�5; 10�4) 0 14 15
[10�6; 10�5) 1 101 136
[10�7; 10�6) 4 391 692
[10�8; 10�7) 27 3478 9758
[10�9; 10�8) 158 10961 20091
[10�10; 10�9) 2807 8659 17949
[10�11; 10�10) 1709 1267 1234
[10�12; 10�11) 262 112 101
[10�13; 10�12) 32 17 23

Table 3

Average number of iterations per eigenvalue for computations summarized in Tables 1 and 2.

Number of iterations
Type n = 100 n = 500 n = 1000

T �nTn where Tn are nonsymmetric Toeplitz matrices 10.12 10.18 11.26
Toeplitz{block matrices 10.34 10.59 11.09

Table 4

Reconstruction and orthogonality errors for 50 matrices An = T �
nTn where Tn are randomly

generated nonsymmetric Toeplitz matrices.

n = 100 n = 500 n = 1000
Interval � � � � � �

[10�5; 10�4) 0 0 1 1 1 1
[10�6; 10�5) 0 0 1 1 2 2
[10�7; 10�6) 0 0 3 3 11 10
[10�8; 10�7) 1 2 12 13 29 31
[10�9; 10�8) 17 13 27 28 7 6
[10�10; 10�9) 28 32 6 4 0 0
[10�11; 10�10) 4 3 0 0 0 0

Table 5

Reconstruction and orthogonality errors for 50 randomly generated Toeplitz-block matrices with
s = 2 and n = 2m.

n = 100 n = 500 n = 1000
Interval � � � � � �

[10�7; 10�6) 0 0 0 1 8 7
[10�8; 10�7) 1 1 2 3 13 23
[10�9; 10�8) 2 3 25 15 21 18
[10�10; 10�9) 22 21 17 26 8 2
[10�11; 10�10) 22 24 6 5 0 0
[10�12; 10�11) 3 1 0 0 0 0
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Table 6

Distribution of errors f�ig for 50 matrices XTX with m = 1024 and n = 128.

Number of errors
Interval AR Process MA Process

[10�7; 10�6) 2 1
[10�8; 10�7) 28 31
[10�9; 10�8) 1657 1824
[10�10; 10�9) 3899 3657
[10�11; 10�10) 814 887

Table 7

Distribution of the relative error between the eigenvalues computed by Algorithm 2:3 method
and those computed by QR method for 50 matrices XTX with m = 1024 and n = 128.

Number of errors
Interval AR Process MA Process

[10�7; 10�6) 3 4
[10�8; 10�7) 136 71
[10�9; 10�8) 1959 2356
[10�10; 10�9) 3736 3612
[10�11; 10�10) 566 357

Table 8

Reconstruction and orthogonality errors for 50 matrices for XTX with m = 1024 and n = 128.

AR Process MA Process
Interval � � � �

[10�8; 10�7) 4 3 3 4
[10�9; 10�8) 19 20 17 19
[10�10; 10�9) 26 25 28 26
[10�11; 10�10) 1 2 2 1
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6. Summary. The experimental results reported here show that Algorithm 2.3
is an e�cient and e�ective method for computing individual eigenvalues of Hermitian
Toeplitz-like matrices. For an n� n Toeplitz{like matrix, the computational cost of
each eigenvalue and an associated eigenvector is O(n2) operations. The method is
more e�cient than general purpose methods such as the QR algorithm for obtaining
a small number (compared to n) of eigenvalues. (See [15]). Since the computation of
each eigenvalue is independent of the computation of all others, the method is highly
parallelizable. Moreover, if q1(�), . . . , qn(�) are computed with a parallel processing
machine utilizing as many processors as necessary to exploit the full parallelism in
the algorithm, the multiplications as well as additions required to compute in (7), (8)
and (9) can be carried out simultaneously. The inner products in (7), (8) and (9) can
also be computed simultaneously by employing parallel processors in O(logn) time
units. Therefore, the computations of fq1(�),. . . ,qn(�)g when performed by O(n)
parallel processors, can be accomplished in O(n logn) time units. Hence the compu-
tations of each eigenvalue, when performed by O(n) processors, can be accomplished
in O(n log n) time.
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