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We consider the n × n (n ≥ 1) system of functional differential

equations

X ′ = FX, t > t0. (1)

For now we make no specific assumptions on the form of the func-

tional F . For example, (1) may be a system of ordinary differential

equations, an integro–differential system, a system with one or more

deviating arguments, or a combination of these. To allow for the

possibility that the values of (FX)(t) for t ≥ t0 may depend on the

values of X(τ) for some τ < t0 (as in the case of a delay equation, for

example), we make the following definition.

Definition 1. If −∞ < t0 < ∞, then Cn(t0) is the space of

continuous n-vector functions X = (x1, . . . , xn) on (−∞,∞) which

are constant on (−∞, t0], with the topology induced by the following

definition of convergence:

Xj → X as j → ∞
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if

lim
j→∞

[ sup
−∞<t≤T

‖Xj(t) − X(t)‖ ] = 0

for every T in (−∞,∞). (Here ‖ · ‖ is any convenient vector norm.)

Notice that Cn(t1) ⊂ Cn(t0) if t0 ≤ t1. We will say X is a solution

of (1) on [t0,∞) if X ∈ Cn(a) for some a ≤ x0 and X satisfies (1) for

t ≥ t0 (derivative from the right at t0). We are interested in giving

conditions on the functional F which imply that (1) has a solution

X̂ such that limt→∞ X̂(t) = C, where C is a given constant vector.

A global result of this kind is a conclusion that such an X̂ exists on

a given interval [t0,∞); a local (near ∞) result is one which implies

that such a solution exists on [t0,∞) provided that t0 is sufficiently

large.

The Schauder–Tychonoff theorem has proved to be a powerful

tool for establishing existence theorems of the kind that interest us

here. More precisely, the following special case of this theorem, which

is essentially the form cited by Coppel (Stability and Asymptotic Be-

havior of Differential Equations) has yielded many useful results. (I

have modified Coppel’s formulation somewhat to adapt it to the sit-

uation considered in Definition 1.)

Lemma 1. Let S be a closed convex subset of Cn(t0), and sup-

pose that T is a transformation of S such that (a) T (S) ⊂ S; (b) T is
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continuous (i.e., if {Xj} ⊂ S and Xj → X , then T Xj → T X); and

(c) the family of functions T (S) is uniformly bounded and equicon-

tinuous on every compact subinterval of [t0,∞). Then there is an X̂

in S such that T X̂ = X̂.

The following theorem illustrates one way in which this theo-

rem can be applied to our problem. It is basically a conventional re-

sult, in that it is modelled after a technique commonly used to study

the asymptotic theory of ordinary differential equations; however, the

present formulation in terms of functional differential equations may

be new.

Theorem 1. Suppose that there are constants a and M (M >

0) and a continuous function w : [a,∞) → (0,∞) such that FX ∈

Cn[a,∞) and ‖(FX)(t)‖ ≤ w(t) for t ≥ a whenever

X ∈ Cn(a) and ‖X(t)‖ ≤ M, t ≥ a. (2)

Suppose further that
∫ ∞

a

w(s) ds < ∞,

and that limj→∞(FXj)(t) = (FX)(t) (pointwise) if each Xj satisfies

(2) and Xj → X . Let C be a given constant, with ‖C‖ ≤ M . Then

the system (1) has a solution X̂ on some interval [t0,∞), such that

limt→∞X̂(t) = C.
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Proof. Choose t0 ≥ a so that

∫ ∞

t0

r(t) dt < M − ‖C‖.

Define

S = {X ∈ Cn(t0)
∣

∣ ‖X(t)‖ ≤ M, t ≥ t0}.

Then S is closed and convex. Define the transformation Y = T X by

Y (t) =











C −
∫ ∞

t
(FX)(S) ds, t ≥ t0,

1 ≤ i ≤ n.

C −
∫ ∞

t0
F (X)(s) ds, t < t0.

(3)

If X ∈ S, then

‖Y (t)‖ ≤ C +

∫ ∞

t0

‖(FX)(s)‖ ds

≤ C +

∫ ∞

t0

w(s) ds ≤ ‖C‖ + M − ‖C‖ = M ;

therefore, T (S) ⊂ S. Since S is a family of functions which are

uniformly bounded on [t0,∞), so is T (S). Differentiating (3) shows
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that ‖Y ′(t)‖ ≤ w(t) if t ≥ t0 and Y ′(t) = 0 if t < t0. Therefore,

T (S) is equicontinuous on every interval (−∞, T ], by the mean value

theorem. To see that T is continuous, let {Xj} ⊂ S and Xj → X as

j → ∞. Then

‖Yj(t) − Y (t)‖ ≤

∫ ∞

t0

‖(FXj)(s) − (FX)(s)‖ ds. (4)

Since the integrand here → 0 as t → ∞ and is dominated by 2w(s),

our integrability assumption on w implies that the integral on the

right of (4) → 0 as t → ∞, by Lebesgue’s dominated convergence

theorem. Hence, Yj → Y as t → ∞. Now the Schauder–Tychonoff

theorem implies that T X̂ = X̂ for some X̂ in S; i. e.,

X̂(t) = C −

∫ ∞

t

(FX̂)(s) ds.

Obviously, X̂ ′(t) = (FX̂)(t) for t > t0, and limt→∞X̂(t) = C.

Although useful results can be obtained from this thereom, it

is clear that the integrability condition on the functional F is very

strong, since it implies that the integrals

∫ ∞

t

‖(FX)(s)‖ds, X ∈ S, (5)

all converge, and even uniformly for all X in S (i.e.
∫ ∞

t
‖FX‖ ds ≤

∫ ∞

t
w(s) ds). It is quite possible to obtain useful results without re-

quiring that the integrals (5) converge at all, so long as the integrals
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∫ ∞
(FX)(s) ds (X ∈ S) converge in the ordinary (i.e., perhaps condi-

tional) sense, and satisfy a uniform estimate of the form

‖

∫ ∞

t

(FX)(s) ds‖ ≤ ρ(t), X ∈ S, (6)

for some function ρ such that limt→∞ ρ(t) = 0. Moreover, it is im-

portant to exploit not just the assumption that the integrals in (6)

converge, but also their rate of convergence. Whenever possible, we

should integrate before taking absolute values. This point is often

missed.

To illustrate this point, we will apply Theorem 1 to the linear

functional system









x′
1(t)

x′
2(t)
...

x′
n(t)









=









a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

...
...

. . .
...

an1(t) an2(t) . . . ann(t)

















x1(g1(t))
x2(g2(t))

...
xn(gn(t))









. (7)

Theorem 2. Suppose that {gij} and {aij} are continuous on

[a,∞) and
∫ ∞

a
|aij(t)| dt < ∞ for 1 ≤ i, j ≤ n. Let C = (c1, c2, . . . , cn)

be a given constant vector. Then the system (7) has a solution X̂ such

that limt→∞ X̂ = C.
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Proof. Here X = (x1, x2, . . . , xn) and we use the vector norm

‖X‖ = max{|x1|, |x2|, . . . , |xn|}.

The continuity of the {gi} and the {aij} implies that FX ∈

Cn[a,∞) if X ∈ Cn(a) and that {FXj} converges pointwise to FX if

Xj → X . (In fact, {FXj} converges uniformly to FX on every inter-

val (−∞, T ], but this is not important.) The integrability condition

can be expressed as
∫ ∞

a

‖A(t)‖ dt < ∞,

where A is the matrix in (7). If ‖X(t)‖ ≤ M , then ‖(FX)(t)‖ ≤

w(t) = M‖A(t)‖. Therefore, Theorem 1 implies the conclusion.

It is somewhat surprising that the conclusion of Theorem 1 does

not depend in any way on the nature of the deviating arguments

{gi}. We have assumed nothing about then other than continuity;

they may be advanced, retarded, or mixed, independently of each

other. In particular, we have not assumed that limt→∞ gi(t) = ∞.

Theorems 1 and 2 may be of interest, but in some situations

their hypotheses are unnecessarily strong and their conclusions are

relatively weak. The following standard corollary of Theorem 2 illus-

trates this.

Corollary 1. Suppose that the {aij} are as in Theorem 2, and let
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C be an arbitrary constant n–vector. Then the linear system X ′(t) =

A(t)X(t) has a solution X̂ such that X̂ → C as t → ∞.

Example 1. Consider the system

[

x′
1

x′
2

]

=
sin t

tα

[

a1t
−1 b1

a2t
−2 b2t

−1

][

x1

x2

]

, t ≥ a > 0, (8)

where b1, b2 6= 0 and α > 0. Since

∫ ∞

t−α| sin t| dt

{

= ∞ if α < 1,

< ∞ if α ≥ 1,

Corollary 1 does not apply to this system if 0 ≤ α < 1; if α ≥ 1, then

Corollary 1 implies that if c1 and c2 are given constants, then (8) has

a solution X̂ = (x̂1, x̂2) such that

lim
t→∞

xi(t) = ci, i = 1, 2.

The corollary provides no estimate of the order of convergence here,

but it is straightforward to show that if α > 1, then

x1(t) = c1 + O(t−α+1) and x2(t) = c2 + O(t−α).

However, a more efficient use of integrability conditions for problems

like this will show later that the true situation is as follows:

Suppose that α > 0. Then:
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(i) If c1 is arbitrary and c2 6= 0, then (8) has a solution X̂ such

that

x1(t) = c1 + O(t−α) and x2(t) = c1 + O(t−α−1).

(ii) If c1 is arbitrary and c2 = 0, then (8) has a solution X̂ such

that

x1(t) = c1 + O(t−α−1) and x2(t) = O(t−α−2).

The following theorem makes more efficient use of the Schauder–

Tychonoff theorem (Lemma 1).

Theorem 3. C = (c1, c2, . . . , cn) be a given constant vector. Let

γ1, . . . , γn be continuous, positive and nonincreasing on [t0,∞) and

let M1, . . . , Mn be positive constants. Let S be the set of functions

X = (x1, . . . , xn) in Cn(t0) such that

| xi(t) − ci | ≤ Miγi(t), t ≥ t0, 1 ≤ i ≤ n.

Suppose that F satisfies the following assumptions:

(i) FX ∈ Cn[t0,∞) if X ∈ S.

(ii) The family of functions F = {FX | X ∈ S} is uniformly

bounded on each subinterval of [t0,∞).

(iii) If {Xj} ⊂ S and Xj → X (uniform convergence on every

9



interval (−∞, T ] ), then

lim
j→∞

(FXj)(t) = (FX)(t) (pointwise), t ≥ t0.

(iv) The integrals
∫ ∞

(FX)(s) ds (X ∈ S), converge, perhaps

conditionally, and there are nonincreasing functions ρ1, ρ2, . . . , ρn such

that

0 < ρi(t) ≤ Miγi(t), 1 ≤ i ≤ n, (9)

lim
t→∞

ρi(t) = 0, 1 ≤ i ≤ n,

and, if X ∈ S and t ≥ t0,

|

∫ ∞

t

fiX ds | ≤ ρi(t), 1 ≤ i ≤ n. (10)

Then (1) has a solution X̂ on [t0,∞) such that

| x̂i(t) − ci | ≤ ρi(t), t ≥ t0, 1 ≤ i ≤ n.

Proof. The transformation Y = T X can be written in terms of

components as

yi(t) =











ci −
∫ ∞

t
(fiX)(s) ds, t ≥ t0,

1 ≤ i ≤ n.

ci −
∫ ∞

t0
(fiX)(s) ds, t < t0.

(11)
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Therefore, from (9),(10) and (11),

|yi(t) − ci| ≤ ρi(t) ≤ Miγi(t);

hence, T (S) ⊂ S, and T (S) is uniformly bounded on [t0,∞), since

S is. Differentiating (11) shows that y′i(t) = (fiX)(t) if t ≥ t0 and

y′i(t) = 0 if t < t0; hence, the mean value theorem and assumption

(iii) imply that the family T (S) is equicontinuous on every interval

(−∞, T ]. The proof that T is continuous is somewhat more delicate

than it was in Theorem 1, since the integrals in question may converge

conditionally. Suppose that {Xj} ⊂ S and Xj → X = (x1, x2, . . . , xn)

as j → ∞. Denote Xj = (x1j , x2j , . . . , xnj); then

yij(t) − yi(t) =

{
∫ ∞

t
(fiXj − fiX) ds, t ≥ t0,

∫ ∞

t0
(fiXj − fiX) ds, t < t0.

Let

Hij = sup
−∞<t<∞

|yij(t) − yi(t)|, 1 ≤ i ≤ n, j = 1, 2, · · · .

Then, if t1 ≥ t0,

Hij ≤

∫ t1

t0

|fiXj − fiX | ds +
∣

∣

∫ ∞

t1

fiXj ds
∣

∣+
∣

∣

∫ ∞

t1

fiXj ds
∣

∣

≤

∫ t1

t0

|fiXj − fiX | ds + 2ρi(t1),
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from (10). Since the last integrand is uniformly bounded on [t0, t1]

for all j and → 0 pointwise as t → ∞, the last integral → 0 as t → ∞,

by the bounded convergence theorem. Hence,

limj→∞Hij ≤ 2ρi(t1)

for every t1. Since limt1→∞ ρi(t1) = 0, this implies that limj→∞ Hij =

0 for 1 ≤ i ≤ n; that is, yij(t) → yi(t) uniformly on (−∞,∞) as

j → ∞. Now Lemma 1 implies the conclusion.

One should not apply Theorem 3 by stating general integrability

conditions and then seeking systems to which they apply. (A result

of this type: If A is a continuous n × n matrix on [t0,∞) and C is a

constant vector, then the system X ′ = A(t)X has a solution X̂ such

that limt→∞ X̂(t) = c.) It is important to think in terms of a specific

system X ′ = FX and a specific “target vector” C, and to base the

choice of γ1, . . . , γn on the integrability properties of FX for functions

X “near” C in some appropriate sense. One way to approach this is

to think of FX as

FX = FC + (FX − FC),

and use the integrability properties of FC to formulate an appro-

priate choice of γ1, . . . , γn which is consistent with the integrability

properties of FX − FC. The following theorem is along these lines.
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Theorem 4. Let S, γ1, γ2, . . . , γn, M1, M2, . . .Mn and C be as

in Theorem 3, and suppose that F satisfies assumptions (i) and (iii)

on the set S of functions X = (x1, . . . , xn) in Cn(t0) such that

| xi(t) − ci | ≤ Miγi(t), t ≥ t0, 1 ≤ i ≤ n.

Suppose further that
∫ ∞

FC dt converges (perhaps conditionally) and

that

sup
t≥t0

(γ1(t))
−1

∣

∣

∫ ∞

t

fiC ds
∣

∣= Ai < ∞, i ≤ i ≤ n. (12)

Suppose also that

|(fiX)(t) − (fiC)(t)| ≤ Miwi(t), 1 ≤ i ≤ n, t ≥ t0, (13)

for all X in S, where

sup
t≥t0

(γi(t))
−1

∫ ∞

t

wi ds = θi < 1, 1 ≤ i ≤ n. (14)

Finally, let

Mi ≥
Ai

1 − θi

. (15)

Then the conclusion of Theorem 3 holds.

Proof. Write

fiX = fiC + (fiX − fiC); (16)

then

|fiX | ≤ |fiC| + Mwi,
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which implies assumption (ii) of Theorem 4 (that the family {FX
∣

∣ X ∈

S} is uniformly bounded on finite subintervals of [t0,∞)). To verify

Assumption (iv), note that (16) implies the inequality

∣

∣

∫ ∞

t

fiX ds
∣

∣≤

∫ ∞

t

|fiX − fiC| ds +
∣

∣

∫ ∞

t

fiC ds
∣

∣;

therefore, (13) implies that

∣

∣

∫ ∞

t

fiX ds
∣

∣≤ ρi(t) =df Mi

∫ ∞

t

wi ds + sup
τ≥t

∣

∣

∫ ∞

τ

fiC ds
∣

∣.

From (12) and (14),

ρi(t) ≤ (Miθi + Ai)γi(t),

and now (15) implies that ρi ≤ Miγi. Hence, Theorem 3 implies the

conclusion.

Remark1. If for some i the integral σi(t) =
∫ ∞

t
wi ds is small

(as t → ∞) compared to
∫ ∞

t
fiC ds, then we have the more precise

estimate

xi(t) = ci −

∫ ∞

t

fiC ds + O(wi(t)).

We now apply Theorem 4 to the linear system









x′
1(t)

x′
2(t)
...

x′
n(t)









=









a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

...
...

. . .
...

an1(t) an2(t) . . . ann(t)

















x1(t)
x2(t)

...
xn(t)









.
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Theorem 5. Suppose that {aij} are continuous on [a,∞) and
∫ ∞

a
aij(t) dt converges (perhaps conditionally) for 1 ≤ i, j ≤ n. Let

C = (c1, c2, . . . , cn) be a given constant vector, and suppose that

γ1, γ2, . . . , γn are nonincreasing positive functions on [a,∞) such that

∫ ∞

t

fiC ds = O(γi(t)), 1 ≤ i ≤ n, (17)

and define

wi(t) =

n
∑

j=1

|aij(t)|γj(t).

Suppose further that

lim(γi(t))
−1

∫ ∞

t

wi(s) ds = θ̃i < 1, 1 ≤ i ≤ n. (18)

Then the system X ′ = AX has a solution X̂ such that

x̂i(t) = ci + O(γi(t)),

for 1 ≤ i ≤ n; moreover, if θ̃i = 0, then this can be replaced by more

precise estimate

x̂i(t) = ci +

∫ ∞

t

fiC ds + O

(∫ ∞

t

wi ds

)

.

Proof. Here we have

(fiX)(t) =
n

∑

j=1

aij(t)xj(t),
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(fiC)(t) =

n
∑

j=1

aij(t)cj ,

and

|(fiX)(t) − (fiC)(t)| ≤

n
∑

j=1

|aij(t)||xj − cj |.

Choose θ1, θ2, . . . θn so that θ̃i < θi < 1 1 ≤ i ≤ n, and then choose t0

so large that

(γi(t))
−1

∫ ∞

t

wi(s) ds = θi < 1, 1 ≤ i ≤ n, t ≥ t0;

this is possible, because of (18). From (17), there are finite numbers

A1, A2, . . . , An such that

sup
t≥t0

(γ1(t))
−1

∣

∣

∫ ∞

t

fiC ds
∣

∣= Ai, i ≤ i ≤ n.

Now choose Mi ≥ A1/(1 − θi), 1 ≤ i ≤ n, and invoke Theorem 4.

This completes the proof.

We emphasize that it is in general a bad tactic to choose γ1, . . . , γn

to be unnecessarily large, and the appropriate choice may depend

upon the target vector C, as the following example will show. These

points are often ignored in standard results in this area. Unfortu-

nately, there appears to be no algorithm for deciding on the optimum
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choice for γ1, γ2, . . . , γn. The obvious way to start is to estimate the

functions φi(t) = supτ≥t

∣

∣

∫ ∞

t
fiC ds

∣

∣ 1 ≤ i ≤ n. Since we have as-

sumed that
∫ ∞

fiC

= dsO(γi(t)) 1 ≤ i ≤ n

, it is clear that we must choose γi so that

The sharpest results can be obtained, often under the weakest hy-

potheses, by choosing γi, . . . , γn consistent with these requirements,

and so that γi(t) approaches zero as rapidly as possible as t → ∞ Since

γ1, . . . , γn determine S and therefore also w1, . . . , wn this “smallest”

choice of γ1, . . . , γn will usually require the mildest integrability con-

ditions. Sometimes it is possible to simply take γi = kiφi. However,

this does not always work, since the conditions on γ1, γ2, . . . , γn are

interrelated; for example, recall the condition from Theorem 5.

lim(γi(t))
−1

∫ ∞

t

n
∑

j=1

|aij(s)|γj(s) ds = θ̃i < 1, 1 ≤ i ≤ n.

Example 1 (Continuation). As mentioned above, a linear

system X ′ = A(t)X (with A continuous on [0,∞)) has a solution X̂

satisfying an arbitrary final condition limt→∞ x̂(t) = C if

∫ ∞

‖ A(t) ‖ dt < ∞.
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This result can be obtained from Theorem 5 by simply taking γi =

1 1 ≤ i ≤ n.The system





x
′

1

x
′

2



 = t−α sin t





a1t
−1 b1

a2t
−2 b2t

−1









x1

x2



 , t > 0, (18)

with b1 6= 0 does not satisfy this inrtegrability condition if α ≤ 1;

moreover, even if α > 1, the standard theorem merely implies that if

c1 and c2 are given constants, then (18) has a solution (x̂1, x̂2) such

that limt→∞ x̂i(t) = ci (i = 1, 2). However, Corollary 1 (with Q = 0)

and Remark 1 imply that if α > 0 and (c1, c2) is arbitrary, then (18)

has a solution (x̂1, x̂2) such that

x̂1(t) = c1(1 − a1Sα+1(t)) − b1c2Sα(t) + 0(t−2α)

and

x̂2(t) = −a2c1Sα+2(t) + c2(1 − b2Sα+1(t)) + 0(t−2α−1),

where

Sβ(t) =

∫ ∞

t

s−β sin s ds = 0(t−β), β > 0.
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This conclusion is obtained by letting γ1(t) = t−α and γ2(t) = t−α−1.

A sharper result is available if c2 = 0; i.e., for every constant c1, (18)

has a solution (x̂1, x̂2) such that

x̂1(t) = c1(1 − a1Sα+1(t)) + 0(t−2α−1),

and

x̂2(t) = −a2c1Sα+2(t) + 0(t−2α−2).

This is obtained by letting γ1(t) = t−α−1 and γ2(t) = t−α−2.

We will now obtain a global result for the nonlinear integral equa-

tion

x′(t) = g(t)(x(t))α +

∫ t

0

P (t, τ)(x(τ))β dτ, t > 0, (19)

where g ∈ C[0,∞) and P is continuous on [0,∞)× [0,∞).

Theorem 6. Suppose that
∫ ∞

t

g(s) ds = O(γ(t)), (20)

∫ ∞

t

|g(s)|γ(s) ds = O(γ(t)), (21)

∫ ∞

t

∫ s

0

P (s, τ) dτ ds = O(γ(t)), (22)

19



and
∫ ∞

t

∫ s

0

|P (s, τ)|γ(τ) dτ ds = O(γ(t)), (23)

where γ is positive and nonincreasing on [0,∞), and limt→∞ γ(t) = 0.

Suppose also that 0 < θ < 1. Then there is a constant c0 > 0 such that

(19) has a solution x̂ on [0,∞) which satisfies the following conditions:

|x̂(t) − c| ≤ θc (t ≥ 0) , x̂(t) = c + O(γ(t)).

provided that either

(a) α, β > 1 and 0 < c < c0; or

(b) α, β < 1 and c > c0.

(Notice that (20) and (21) do not imply that
∫ ∞

|g(s)| ds < ∞,

nor do (22) and (23) imply that
∫ ∞ ∫ s

0
|P (s, τ)| dτ ds < ∞.)

Proof. For convenience, normalize γ so that γ(0) = 1. Here

(Fx)(t) = g(t)(x(t))α +

∫ t

0

P (t, τ)(x(τ))β dτ.

and

(Fc)(t) =

∫ ∞

t

g(s) dscα + cβ

∫ t

0

P (t, τ) dτ.

If c > 0, let

S = {x ∈ C[0,∞)

∣

∣

∣

∣

|x(t) − c| ≤ θcγ(t), t ≥ 0}.
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Then, if x ∈ S, |x(t) − c| ≤ θc (t ≥ 0), since γ is nonincreasing.

Obviously, F satisfies assumptions (i), (ii), and (iii) of Theorem 3.

Now,

∫ ∞

t

Fxds =

∫ ∞

t

Fc ds +

∫ ∞

t

(Fx − Fc) ds

= cα

∫ ∞

t

g(s) ds + cβ

∫ ∞

t

∫ s

0

P (s, τ) dτ ds

+

∫ ∞

t

g(s)[(x(s))α − cα] ds

∫ ∞

t

∫ s

0

P (s, τ)[(x(s))β − cβ] ds.

By the mean value theorem,

|xα − cα| ≤ K(α) =df |α|[(1 ± θ)c]α−1|x − c|

if |x−c| ≤ θc (with “+” if α > 1, “−” if α < 1. Since |x(t)−c| ≤ θcγ(t)
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if x ∈ S, this means that

∣

∣

∣

∣

∫ ∞

t

Fxds

∣

∣

∣

∣

≤ cα

∣

∣

∣

∣

∫ ∞

t

g(s) ds

∣

∣

∣

∣

+cβ

∣

∣

∣

∣

∫ ∞

t

∫ s

0

P (s, τ) dτ ds

∣

∣

∣

∣

Kcα

∫ ∞

t

|g(s)|γ(s) ds + Kcβ

∫ ∞

t

∫ s

0

|P (s, τ)|γ(τ) dτ ds,

where K is a constant which does not depend on α or β. Since all

four integrals on the right are O(γ(t)), this means that

(γ(t))−1

∣

∣

∣

∣

∫ ∞

t

Fxds

∣

∣

∣

∣

≤ Acα + Bcβ, x ∈ S, t ≥ 0,

where A and B are constants which do not depend on α or β. Since

our requirement is that

(γ(t))−1

∣

∣

∣

∣

∫ ∞

t

Fxds

∣

∣

∣

∣

≤ θc, x ∈ ,S, t ≥ 0,

we have only to choose c so that

Acα−1 + Bcβ−1 ≤ θ.

This is true for c sufficiently large if α, β < 1, or for c sufficiently small

if α, β > 1.
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