Inverses of lower triangular Toeplitz matrices

William F. Trench

Define $a_{n}=0$ if $n<0$ and assume that $a_{0} \neq 0$. Let

$$
T_{N}=\left(a_{r-s}\right)_{r, s=1}^{N}, \quad N=1,2, \ldots,
$$

be the family of lower triangular Toeplitz matrices generated by the formal power series

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

The family of inverses is given by

$$
T_{N}^{-1}=\left(b_{r-s}\right)_{r, s=1}^{N}, \quad N=1,2, \ldots
$$

where

$$
\begin{equation*}
g(z)=\sum_{n=0}^{\infty} b_{n} x^{n} \tag{2}
\end{equation*}
$$

is the formal reciprocal of $f(z)$; that is, $b_{n}=0$ if $n<0, b_{0}=1 / a_{0}$ and

$$
\sum_{r=0}^{n} a_{r} b_{n-r}=0, \quad n>0
$$

This formula can be used to compute $\left\{b_{n}\right\}_{n=1}^{\infty}$ recursively:

$$
b_{n}=-\frac{1}{b_{0}} \sum_{r=1}^{n} a_{r} b_{n-r}
$$

This seems to me to be the most practical way to proceed.
I can think of two "explicit" expressions for b_{n}; however, although they may be of some theoretical interest, they don't seem very useful.
Formula I.
For every $n \geq 1$,

$$
T_{n+1}\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Applying Cramer's rule here yields

$$
b_{n}=\frac{(-1)^{n}}{a_{0}^{n+1}}\left|\begin{array}{ccccc}
a_{1} & a_{0} & 0 & \cdots & 0 \\
a_{2} & a_{1} & a_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0} \\
a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{1}
\end{array}\right|
$$

Formula II.

Temporarily assume that (1) has a positive radius of convergence. Then so does (2). Moreover,

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(0)}{n!} \quad \text { and } \quad b_{n}=\frac{g^{(n)}(0)}{n!} \tag{3}
\end{equation*}
$$

According to the formula of Faa di Bruno (Ch.-J de La Vallee Poussin, Cours d'analsye infinitesimale, Vol. 1, 12th Ed., Libraire Universitaire Louvain, Gauthier-Villars, Paris, 1959) for the derivatives of a composite function,
$\frac{d^{n}}{d x^{n}} h(f(x))=\sum_{k=1}^{n} h^{(k)}(f(x)) \sum_{k} \frac{n!}{k_{1}!\cdots k_{n}!}\left(\frac{f^{\prime}(x)}{1!}\right)^{k_{1}}\left(\frac{f^{\prime \prime}(x)}{2!}\right)^{k_{2}} \cdots\left(\frac{f^{(n)}(x)}{n!}\right)^{k_{n}}$,
where \sum_{k} is over all partitions of k as a sum of nonnegative integers $k_{1}, k_{2} \ldots, k_{n}$ such that

$$
k_{1}+k_{2}+\cdots+k_{n}=k \quad \text { and } \quad k_{1}+2 k_{2}+\cdots n k_{n}=n
$$

We're interested in $g(x)=1 / f(x)$; therefore, we take $h(u)=1 / u$ in obtain

$$
\frac{d^{n}}{d x^{n}} g(x)=\sum_{k=1}^{n} \frac{(-1)^{k} k!}{(f(x))^{k+1}} \sum_{k} \frac{n!}{k_{1}!\cdots k_{n}!}\left(\frac{f^{\prime}(x)}{1!}\right)^{k_{1}}\left(\frac{f^{\prime \prime}(x)}{2!}\right)^{k_{2}} \cdots\left(\frac{f^{(n)}(x)}{n!}\right)^{k_{n}}
$$

Setting $x=0$ here and recalling (3) yields

$$
b_{n}=\sum_{k=1}^{n} \frac{(-1)^{k} k!}{a_{0}^{k+1}} \sum_{k} \frac{1}{k_{1}!\cdots k_{n}!} a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{n}^{k_{n}}
$$

Although we derived this formula assuming that (1) has a positive radius of convergence, it is a purely algebraic result that doesn't require this assumption.

